Inleiding

Elke geologische periode heeft een karakteristieke fossielenhood met haar eigen soorten van mariene of continentale oorsprong. De veranderingen in fossielenhood in de aardlagen vormt de basis voor biozones: de ene biozone heeft een duidelijk andere soortensamenstelling dan de volgende en de vorige. Bepaalde soorten of geslachten, die kenmerkend zijn voor een bepaalde biozone, zijn hiervoor aangewezen als gidsfossielen.

De indeling van gesteenten op basis van fossielenhood heet de biostratigrafie.

Het correleren van vindplaatsen kan op verschillende manieren gedaan worden. Eén van die methodes is de biostratigrafie. Hierdoor kunnen zelfs geïsoleerde vindplaatsen gecorreleer worden die honderden kilometers uit elkaar liggen. Dit is mogelijk door de aanwezigheid van dezelfde fossiele soorten, ook al is het gebied aan tektonische veranderingen onderhevig.

De biostratigrafie is in eerste instantie een kwalitatieve methode ter rangschikking en geeft geen exacte dateringen. Een interessante vraag ontstaat als biozones aan absolute dateringen gekoppeld worden: "Repræsenteren de biozones overal ook exact dezelfde tijdsperioden?" Een illustratief voorbeeld voor deze vraag vormen de opeenvolgingen van fossiele knaagdierkiesjes uit het Midden-Mioceen van Europa.

De MN-zonering

De paleontoloog Pierre Mein presenteerde in 1975 een chronologische ordening van een reeks vindplaatsen met karakteristieke zoogdiersoorten uit het continentale Neogeen (Mioceen en Plioceen = 23,0 – 1,8 miljoen jaar) van Europa met het doel die vindplaatsen met elkaar te correleren. Een zeer belangrijke groep hierbij waren de knaagdieren, wier kiezen goed fossiliseren, omdat ze van goed fossiileerbaar materiaal (met name glazuur) zijn gemaakt, relatief veel te vinden zijn en relatief snel evolueren. Meins model is nog steeds de basis voor het MN (Mammal Neogene) systeem met de genummerde eenheden MN1 tot en met MN17.

Een MN-biozone wordt gedefinieerd door een zogenaamde referentielokaliteit, een vindplaats die met haar specifieke soortensamenstelling karakteristiek is voor een bepaalde eeuw van de geologische tijd in een bepaalde geografische ruimte. De soortensamenstelling op die plek is dus anders dan die van een oudere of jongere referentielokaliteit.

Het idee was om nieuwe vindplaatsen direct te koppelen aan één van de referentielokaliteiten die in 1976 aan het model van Mein waren toegevoegd (Fahlbusch, 1976; Van Dam, 2003). In de loop van de jaren werden er echter ook vindplaatsen tussen de

referentielokaliteiten geplaatst vanwege hun iets afwijkende fossielenhood. Het gevolg was dat sommige paleontologen grenzen tussen biozones verder wilden verflijken, terwijl anderen dat juist niet wilden om het systeem toepasbaar te houden over grote afstanden.

De biozones werden eerst gebruikt zonder radiometrische en magnetostratigrafische dateringen. Echter, begin negentiger jaren werd de magnetostratigrafie populair voor het dateren van Neogene afzettingen in Europa. De magnetostratigrafie beschrijft de veranderingen in gesteenten op basis van omkeringen van het aardmagnetische veld. Deze omkeringen, opgeslagen in de sedimentlagen, zijn een globaal (wereldwijd) fenomeen. Ze zijn daarom handig voor het bepalen van absolute ouderdommen. De kalibratie van aardmagnetische omkeringen naar de geologische tijdschaal is afhankelijk van andere methoden zoals radiometrische dateringen of astrochronologie (dateren met behulp van Milankovitch-cycli).

Het Neogeen in Europa

In de afgelopen 50 jaar is in Spanje en Zwitserland veel biostratigrafisch en paleomagnetostratigrafisch onderzoek gedaan aan lange secties van continentale afzettingen. Daardoor is een redelijk compleet biostratigrafisch en lithostratigrafisch overzicht ontstaan met betrouwbare dateringen. De meeste Spaanse zoogdiervindplaatsen liggen in de bekens
Duitsland en andere Europese landen bevinden zich in slecht ontsloten gebieden, waardoor paleomagnetistragifische methoden slechts in beperkte mate toepasbaar zijn. De exacte ouderdommen van bijvoorbeeld de Zuid-Duitse vindplaatsen Sandelshausen en Puttenhausen zijn onzeker, omdat onderzoek aan de beschikbare sedimenten resulteerde in slechts een paar paleomagnetistragifische omkerringen (Abdul Aziz et al., 2007).

Sansan, de referentieloaliteit van MN6

Een goed voorbeeld van een andere geïsoleerde vindplaats is de Franse referentieloaliteit van MN6 (Midden-Miocene): Sansan. Enkele belangrijke knaagdersoorten die karakteristiek zijn voor deze MN-zone zijn Microdyromys complicatus en Megacricetodon minor (De Brujin et al., 1992) (Afb. 1, 2). Paleomagnetistragifisch onderzoek van Sen (1997) laat zien dat de lengte van de MN-zone in Sansan bijna 2 miljoen jaar is. Uit deze sectie is echter geen radiometrische datering bekend en daarom is de koppeling van de slechts twee normale ‘chrons’ aan de globale polariteitschaal zeer twijfelachtig (zie ook Daams et al. 1999). Dus moet geconcludeerd worden dat de exacte ouderdom van Sansan niet te achterhalen is. (Afb. 1, 2, 3)

Het paleomagnetisch onderzoek aan de langere secties van Zwitserland en Spanje leverde betere resultaten op. In de kolom zijn veel omkeringen aangetoond, waardoor de correlatie met de globale polariteitschaal betrouwbaar te noemen is. Deze zoogdiervindplaatsen waren al bekend aan een MN-zone. Volgens Daams (1998) zou de Spanse lokaliteit Las Planas 5B (16.5 miljoen jaar oud) het best te corresponderen zijn met Sansan, gebaseerd op de twee knaagdersoorten Megacricetodon gerssi en Megacricetodon minor (Daams et al., 1998). Las Planas 5B is 16.5 miljoen jaar oud. Op basis van de paleomagnetistragifische informatie. Echter, in andere, iets jongere Spanse vindplaatsen zijn deze twee soorten Megacricetodon ook gevonden. Als gevolg hiervan is een bredere ouderdomsdatering geschikt: de Spanse lokaliteiten die met Sansan te corrateren zijn, geven een ouderdom tussen 13.3 en 13.5 miljoen jaar.

In Zwitserland is geprobeerd om de fossiele zoogdierfauna van de lokale Nichinen (13.6 miljoen jaar) te corrateren met Sansan (Kälin, 2003). Het is echter zeer de vraag of dat correct is, wat Kälin gebruikt drie knaagdersoorten voor de correlatie met Sansan: Cricketodon sansaniensis, Muscardinus sansaniensis en Docimocricetodon freisingensis. Op basis van deze drie soorten kunnen echter meerdere Zwitserse lokaliteiten naar Sansan worden gecorrateren. De ouderdomsbepaling wordt dan 13.6-14.0 miljoen jaar.

Samenvattend zijn er dus drie mogelijke, maar verschillende ouderdomsbepalingen voor Sansan: 15-16 (FRA), 13.3-13.5 (Spa) en 13.6-14.0 (Zwi) miljoen jaar. Er is al beargumenteerd waarom 15-16 miljoen jaar waarschijnlijk niet juist is. De ouderdomsbepaling van de Spanse en Zwitserse lokaliteiten die aan Sansan gekoppeld zijn, komen niet overeen: de Spanse is jonger. De vraag is of dit een incident is of dat ouderdomsverschillen structureel voorkomen.

Regionaal correleren

De hamvraag is natuurlijk hoe het kan dat de Spaanse en Zwitsersse lokaliteiten met dezelfde MN-correlatie zo duidelijk verschillen in ouderdom. De Midden-Mioceen knaaigiersoorten die zowel in Spanje als in Zwitserland voorkomen, worden in Tabel 1 op een rijtje gezet en daarbij ook de dateringen uit Spanje en Zwitserland. Maar liefst acht van de elf soorten zijn duidelijk eerder in Zwitserland dan in Spanje, waaronder belangrijke gidssoorten zoals Democricetodon freisingensis, Megacrictodon gersii, Megacrictodon gregarius en Democricetodon franconicus. (Afb. 5)

Dit betekent dat er structureel migraties hebben plaatsgevonden vanuit Zwitserland en omstreeks naar Spanje. Migratieroutes reconstrueren op basis van alleen MN-zones is om deze reden dan ook zeer gevaarlijk. Toch trekken niet alle soorten vanuit Centraal-Europa (Zwitserland) naar Spanje; veel soorten komen niet eens aan in Spanje. Dat niet alle soorten naar Spanje migreren, komt waarschijnlijk door de grotere droogte daar en wellicht spelen de Pyreneë een rol. Deze vormen een natuurlijke barrière die overgestoken of omzeild zal moeten worden om in Spanje te geraken. Een ander feit is dat in Spanje veel endemische (plaatsgebonden of eigen) knaaigiersoorten voorkomen die verderop zouden moeten worden door de nieuwe soorten vanuit het noorden. Het gevolg hiervan is dat er niet heel veel soorten zijn die in beide gebieden voorkomen in het Midden-Mioceen; iets wat de vergelijking niet gemakkelijker maakt.

De migratie naar Spanje vanuit Zwitserland is mogelijk een niet op zichzelf staand fenomeen, maar zou heel goed samen kunnen hangen met de klimaatveranderingen die tussen de 10 en 20 miljoen jaar geleden plaatsvonden. Vanaf ongeveer 20 tot 15 miljoen jaar geleden heerste er een warmer klimaat gevolgd door een kouder wordend klimaat tussen de 14 en 10 miljoen jaar (gebaseerd op Spaanse en globale gegevens, Van der Meulen & Daams, 1992 en Zachos et al., 2001). Vooral het kouder worden vanaf circa 14 miljoen jaar geleden kan een belangrijke oorzaak zijn geweest van de zuidelijke migratie van zoogdieren.

Conclusies

Samenvattend kan worden gesteld dat de besproken biotopen voor knaaigieren niet dezelfde tijd representeren omdat migratie als een belangrijk proces zorgt voor verschuivingen van biotopen per continent. Bij het gebruiken van het MN-systeem zal hier dan ook rekening mee gehouden moeten worden door absolute dateringen alleen lokaal te gebruiken voor het correleren van zoogdierenplaatsen. Niets is blijven fossiele knaaigierenkies over het belangrijk voor ouderdomindicaties voor met name geïsoleerde vindplaatsen.

Dankbetuigingen

Albert van der Meulen, Hans de Bruijn, Jan van Dam, Kees Hordijk, Wilma Wessels (allen Universiteit van Utrecht) en Daniël Källin worden hartelijk bedankt voor de fantastische hulp op diverse manieren.

<table>
<thead>
<tr>
<th>Soorten</th>
<th>Spanje</th>
<th>Zwitserland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democricetodon franconicus</td>
<td>14.85–16.18</td>
<td>16.65–17.2</td>
</tr>
<tr>
<td>Eomypops catalaunicus</td>
<td>13.05–13.25</td>
<td>10.58</td>
</tr>
<tr>
<td>Megacrictodon gersii</td>
<td>13.30–13.73</td>
<td>13.35–14.18</td>
</tr>
<tr>
<td>Megacrictodon gregarius</td>
<td>12.17</td>
<td>13.4</td>
</tr>
<tr>
<td>Microdyromys complicatus</td>
<td>11.75–14.07</td>
<td>10.58–16.6</td>
</tr>
<tr>
<td>Myoglis meini</td>
<td>11.75–13.46</td>
<td>13.1–13.4</td>
</tr>
<tr>
<td>Paraglirulus wernfelsi</td>
<td>12.59–13.99</td>
<td>10.58–16.05</td>
</tr>
<tr>
<td>Spermophilus beldai</td>
<td>11.50–13.96</td>
<td>10.58–15.87</td>
</tr>
</tbody>
</table>

Tabel 1. De soorten die zowel in Spanje als in Zwitserland voorkomen met hun tijdsrange in miljoenen jaren.
Referenties

Abdul Aziz, H. et al., 2007. Intergrated stratigraphy and 40Ar/39Ar chronology of the Early to Middle Miocene Upper Freshwater Molasse in eastern Bavaria (Germany). International Journal of Earth Sciences. DOI 10.1007/s00531-006-0166-7 (online publication).

Källin, D., Kempf, O., 2002. High resolution mammal biostratigraphy in the Middle Miocene continental record of Switzerland (Upper Freshwater Molasse, MN4-MN9, 17-10 Ma) part 1-3, poster.

Website

www.stratigraphy.org